3

. (02) 61.22.232/61.22.262

20092 CINISELLO B. (MI)

W W W
Uffici e Laboratorio:
Via Pelizza Da Volpedo,

v

IR B A 2 2e Po AP FF L LIS T0 L WLSSTAPLEN ©
4 -

o0

b’ 8o

P 2

W i e e e G i

(A

&

S 50,08 T8 78 o tve Yo ¥
< e

R g o

: A

i Sl £ .

el Mw 3

I~

T e T e e e T 70 ra 8 S L S DGR TR,

W

Py Pl

o ey (o8

T hor ha At dar ot a0 o e ate 00 B8 ER A 2R e B Ve VS e e B8 B 0 FFL A NE I AL AR -

i

.,‘.f ,\,,w,,., «‘g;&’mfpt’ 1 4
1 M M VAl As A T

uﬁ){;\qu L L) W N

SOOI
R e b ?)
e .

B IW I
T

g ’

Edition 1 February 1982

ASED is the Assembler-Editor Package designed to be used on the
NBZB80-ASED Nanocomputer .

The present manual describes the ASED software. For installation or for
a description of the system configuration, refer to the:

Z80 Nanocomputer NBZ80-HL and NBZ80-ASED Technical Manual (order code:
DANBZHLTM/1) .

In particular, refer to the Section 2.2 for the initialisation and to

the Appendix A.2 for an example concerning the use of the Assembler and
Editor.

Here a list of useful related manuals follows:

Z80 Nanocomputer Training System Technical Manual (Order Code:
DANBZTM/2)

280 Nanocomputer NBZ80-HL and NBZ80-ASED Technical Manual (O.
C. :DANBZHLTM/1)

SGS Basic Language User”s Manual (O. C.:DABASLUM/1)

UPZ80-HL Assembly Instructions Manual (O. C.:DAUPZ80HLAIM/1)

EPZ80 EPROM Programmer Technical Manual (O. C.: DAEPZTM/1)

RCZ80 Technical Manual (O. C.: DARCZTM/1)

Also useful are the following:
- Z80 microprocessor book 1 - Programming (O. C.: DAZ8ONPROG/1)

- 280 microprocessor book 3 - Interfacing (O. C.: DAZ8ONINTF/1)

CHAPTER 1 THE EDITOR

1.1 Introduction

1.2 Editor Command Format

1.3 Commands and special key functions
1.4 Editor Commands

1.5 Diagnostic Messages

1.6 Summary of the commands

CHAPTER 2 THE ASSEMBLER
2.1 Assembly Language Instructions
2.2 Writing the instructions
2.3 Pseudo Instructions
2.4 Printer Format
2.5 Available routines
2.6 Errors
APPENDIX A EXAMPLES
A.l EDITOR
A.2 ASSEMBLER
LIST OF TABLES
Table 1.2.a Editor Command Formats

III

Page

CHAPTER 1

THE EDITOR

1.1 Introduction

In the following description the terms "text mode" and "command mode"
are used frequently. In text mode lines of text are inserted into the
memory buffer. All characters are ignored by the Editor Command Decoder
(except ESCAPE and ALT MODE) and are inserted in the buffer as they are
entered on the keyboard. In command mode the characters entered via the
keyboard are examined by the Editor as prospective commands and, if
recognised, are executed. The command mode is indicated by the prompt
character "#".

NOTE

In the following sections the notation "CTRL/key" will
be used to denote the simultaneous pressing of the keys
CONTROL and "key".

In°
an
un

pu

1.2 Editor Command Format

In general a command consists of the fields: argument, command, option.
Each command is a single character which can be preceded by one or two
arguments and can be followed by one option. The command character
tells the Editor what to do; the arguments specify which lines are to be
modified; the option is related to the specific command.

Table 1.2.a shows the possible command formats. "E" indicates a command
character; "m" and "n" the arguments; "o" the option. The Editor
indicates that it is in command mode by printing the character #.

Note that unless stated otherwise, every command must be terminated by
the CR (Carriage Return) key.

Type Format Operation

no argument E executes the operation E

one argument nE executes E on line n

two arguments m,nE executes E from line m to
line n inclusive

no argument ' EX executes E with option X

o X

two arguments m,nEX executes E from line m to

o X line n inclusive with

option X

Table 1.2.a - Editor Command Formats

The arguments m and n refer to the lines numbered in memory, both must
be positive and n must be greater than m. Where two arguments are used
they must be separated by a comma and the command E must always come
immediately after the argument(s).

The Editor will consider only the first character of the command, the
rest of the line will be ignored. Therefore:

#L

#LIST
#LIST ALL

are all equivalent.

Some of the Editor commands accept a single-character option. Where the
options are valid this character must follow the command character.

Example:
#WT T option for the W command

This command tells the Editor to write the buffer in memory into the
output device, converting TABs into spaces.

Each time the user requests non-existent information or enters an
incorrect command, the Editor will print diagnostic messages. A list of
these is given in Section 1-5.

In
an
u

pu

1.3 Cammands and special key functions

1.3.1 RETUNN (CR or carriage return)

In both command mode and text mode, pressing the RETURN key will cause
the Editor to process the line that has just been entered. If the
Editor is in command mode the 1line will be treated as a command and
executed, if possible. Commands are not executed until RETURN is pressed
unless LINE FEED or the "less than" sign "<" are entered (see 1.3.9).
In text mode the line of text will be stored in the memory buffer when
RETURN is pressed.

1.3.2 CTRL/U (Erase)

The character "erase" is used to correct errors in both command and text
mode. It consists of the keys CTRL (control) and U pressed
simultaneously. This special key will delete the line and wait for a
new line. The line can then be re-entered correctly.

1.3.3 RUBOUT or DELETE

RUBQUT (DELETE) is used to correct errors in both modes, but is ignored
during READ commands. At any time, pressing RUBOUT (DELETE) will delete
the last 'character typed echoing a backslash () followed by the deleted
character. Repeated depressions of RUBOUT will delete further characters
from right to left up to the beginning of the line.

1.3.4 ALT MODE or ESCAPE

Either of these keys can be used to return the Editor to command mode.
If ALT MODE is pressed in command mode it will be ignored. When the
Editor is in text mode, the ESCAPE key returns it to command mode
ignoring any text preceeding the key. After the commands LIST and WRITE
the ESCAPE key interrupts the execution of the command, i.e. it stops
the printing or the writing into the output device and the Editor waits
for a new command. The operator can choose either to abort the command
or continue.

1.3.5 ESCAPE

Escape aborts the operation and returns the Editor to command mode. Any
other character makes the Editor recommence execution of the interrupted
command.

1.3.6 "." or LINE NUMBER

The Editor maintains a decimal number to indicate which line is being
manipulated. At any time, while in command mode, the point "."
signifies the current line number and can be used as an argument in
commands.

Example:
#.L

This tells the Editor to print the current line. After an Editor
command the line number - and hence the point - depends on the
particular command:

1. After READ and APPEND commands the line number is equal to the last
line of the buffer

2. After INSERT, CHANGE and OVERLAY commands the line number is set to
the last line entered

3. After a LIST command the line number points to the last 1line in the
buffer

4. After a SEARCH command the line number points to the line where the
object sought was found

5. After a DELETE command the line number is equal to the line number
following the last line deleted

6. After a KILL command the line number is reset.

1.3.7 "/ or SLASH

The slash character represents the last line in the buffer and can be
used as an argument, eg:

#/L

This command makes the Editor list the last line of the buffer.

1.3.8 LINE FEED

Pressing the line feed key in response to the command mode prompt
makes the Editor print the 1line after the current line and increments
the line number ".". This means that the line number will then be at the
line which has just been printed. If the line feed key 1is pressed
while a command or a line of text is being entered (i.e. before RETURN
is pressed) the Editor will reprint the line. This 1is very useful for
verifying lines when the RUBOUT key has been used.

Inf
an
un
pu

1.3.9 "<" or Less Than

If this key is pressed the Editor prints the line before the current
line. The line number will be decremented so that it indicates the line
number of the line which has just been printed.

1.3.10 "=" or Equal

This symbol is used with the point "." and the forward slash "/". If it
is pressed. after the point the number of the current line is printed.
If, on the other hand, it follows a forward slash the line number of the
last line in the buffer is printed.

Examples:

#.= the current line number is printed
XXXX

#/= the number of the last line in the
XXXX buffer is printed

1.3.11 CTRL/G

If the control-G (BELL) key combination is pressed after a string search
the Editor will look for the next occurrence of the same string in the
buffer.

Example:

#S SEARCH command

HL for the string “HL”

LD HL ,BUFF the string has been found in this line
#CTRL/G continue the search

LD A, (HL) another line containing “HL” is found
#CTRL/G continue again the search

NO MATCH there are no more “HL” strings in the buffer

1.3.12 CTRL/TAB or Tabulation

The Editor is arranged so that it can simulate horizontal tabulation
with intervals of 8 spaces. When the user holds down the CTRL key and
presses the TAB key (or HT) the Editor tabulates one position, i.e. it
shifts the carriage to the next tabulation position by moving between 1
and 8 spaces as necessary. In the memory buffer, the Editor stores only
the TAB code (saving memory space) and this will be written into the
output device unless the option "T" is specified.

1.3.13 CIRL/C

This key combination interrupts the Editor and returns control to the
Monitor NC-Z.

1.4 Editor Commands

1.4.1 APPEND
#A

This command is used to enter a new text via the keyboard or to add it
to the end of an existing text. When the APPEND command is received the
Editor enters text mode and the user can enter any number of lines of
text.

The new text will be added to the information already in the buffer
until the user terminates the text mode by pressing ESCAPE or ALT. If
ESCAPE is pressed at the end of a line the Editor will return to command
mode and ignore that line.

If the key combination CTRL/U is entered while a line of text is being
written, the line will be cancelled and the user can rewrite it. In
text mode the RUBOUT key will cancel the last character. Pressing RUBOUT
more than once deletes further characters from right to left until the
beginning of the line is reached.

1.4.2 ILOCATE Buffer

#B
STRING

The user types "B" followed by CR (carriage return) and STRING also
followed by CR. STRING represents a string of characters which is
separated from the command B by a space and terminated by carriage
return.

When the Editor receives this command it will search through the entire
file for the buffer that contains the string.

When (and if) the Editor 1locates the string it prints the line that
contains it and returns to command mode. In the execution of this
command the Editor searches for the string in the buffer and if it is
not found the buffer will be transferred to the output file, cancelled
and new text will be read in from the input device. The process 1is
repeated - search, transfer, delete, read - until either the string is
found or the END OF TEXT (Form Feed) is encountered. The last buffer (or
the one in which the string was found) is not transferred to the output
device.

"NO MATCH" will be printed if the string is not found.

n
N
In
U

1.4.3 CHANGE

#nC

OLD STRING

NEW STRING

NEW LINE IS PRINTED

With this command the Editor searches for the string OLD STRING in line
n (the current line by default) and replaces it with the string NEW
STRING. The new (modified) line is then printed.

If OLD STRING is not found in the specified line, the message "NOT
MATCH" will be printed and the Editor will return to command mode.

Examples:

#.L

HAPPY DAYS WERE HERE ONCE
#C

WERE HERE ONCE

ARE HERE AGATN

HAPPY DAYS ARE HERE AGAIN

#.L

IS AN EXAMPLE

#C

T

THIS

THIS IS AN EXAMPLE

$.L

YOU ARE WRRIGHT
#C

WR

(empty line)
YOU ARE RIGHT

#.L

EXAMMINE THE TEXT
iC

AMI

NO MATCH

#

- P —

1.4.4 DELETE
#nD

This deletes the line n. This line is removed from the memory buffer and
the line numbers of all the successive lines are decremented by one.

#m,nD

With both arguments the lines from m to n (n>m) inclusive are deleted.
The current line will then be the one immediately after the 1last line
deleted.

The Editor remains in command mode after DELETE operations.

#D is equivalent to:
#.D and deletes the current line.
#Dn deletes n lines starting from the

current line.

1.4.5 EXIT
#E

The Editor writes the current buffer into the output device and
transfers all the text from the input device to the output device.
Control then returns to the Monitor NC-Z.

NOTE

The READ command must be used at least once before EXIT
can function properly, tranferring the input data from
the mag/paper tape to the output device; otherwise EXIT
behaves 1like a QUIT command loosing the remaining
information at the input device.

The EXIT command can have one or two arguments.

#nE

#m,nE

In the first case only line n of the current buffer is transferred to
the output file; in the second the lines fromm to n are transferred.
After this the transfer of all the text from the input device to the

output device is effected.

See Section 1.4.15 for the option "T".

1.4.6 INSERT
#nl

This is used to insert new text before line n, up until ESCAPE or ALT is
pressed. The Editor enters texts mode to acept the input and functions
like APPEND as the text is being inserted. The first line to be entered
becomes the new line n.

The line numbers of all the subsequent lines are incremented by the
number of lines inserted and the current line pointer "." will be the
number of the last line inserted. If the line number in the command is
omitted the current line is assumed by default.

#I inserts text before the current line
#.1 as I

#nI inserts text before line n

1.4.7 KILL

#K

KILL?

The KILL command deletes all the text in the buffer. After receiving
this command the Editor prints "KILL?" and waits for confirmation before
executing the command. This is to minimize the chances of deleting the
buffer accidentally If the response to this prompt is "Y" (YES) the
command is executed and the Editor returns to command mode. If any
other character is entered the KILL command is ignored and the Editor
just returns to command mode.

1.4.8 LIST

#L writes the entire buffer on the terminal

#nL writes line n on the terrminal

#m,nL writes lines m to n on the terminal

#Ln writes n lines starting from the current line

The LIST command updates the current line pointer and the Editor returns
to command mode.

1-10

1.4.9 NEXT

#N

The Editor writes the current buffer into the output device, deletes the
buffer, reads new text from the input device to refill it and returns to
command mode.

NEXT can have one or two arguments.

#nN

#m,nN

In the first case it writes only line n of the buffer into the output
device; in the second it writes from line m to line n. The buffer is

then completely deleted and new text is read from the input device.

See Section 1.4.15 for the option "T".

1.4.10 OVERLAY
#nO

With this command the Editor replaces line n (or the current line if n
is omitted) with as many lines as are entered by the user.

This command is equivalent to:

#nD
#nI

Where n coincides with the last line to be cancelled and the new text
added on the end.

#0 replaces the current line with new text
#.0 same as #0

#nO replaces line n with new text

#0On replaces n line starting from the current

line with new text

#mOn n lines starting from the line number m
’ are replaced with new text

1-11

Inf
am
un
pu

1.4.11 QUIT
#Q

whit this command the Editor writes the current buffer into the output
device and the Editor ends. Control returns to the Monitor NC-Z.

See Section 1.4.15 for the option "T".

1.4.12 READ
#R

The Editor reads text from the input device until it encounters the code
FORM FEED (corresponding to the key combination CTRL/L) or,
alternatively, until the memory buffer is filled.

The READ command can be issued both when the buffer is empty and when it
already contains some text. In the latter case all the text read, except
the FORM FEED code, is added to the contents of the memory buffer.

During a READ command the RUBOUT, NULL and LINE FEED keys are ignored by
the Editor. The Editor will also, during the READ command, declare that
the buffer is full when the last line loaded leaves spaces for about 100
characters. This allows a limited number of extra characters to be
inserted before the buffer is completely full.

The Editor prints:
XXXX LINES READ IN

where XXXX is the number of 1lines in the buffer and returns to command
mode. At this point, every subsequent READ command will make the Editor
reprint the message given above.

#RH

This is a command for the exclusive use of the system and it is not
available to the user.

As with the command R without option except the Editor reads text from
the high speed paper tape reader untill it encounters the code FORM FEED
or alternatively untill the memory buffer is filled.

1~12

1.4.13 RETURN TO MONITOR NC-Z
#CTRL/C

This command aborts the Editor. Control returns to the Monitor NC-%Z.

1.4.14 STRING SEARCH
#S STRING

STRING is a character string separated by a space from the command and
terminated by carriage return. This command searches for a string of
characters in the buffer. Every line of the buffer is examined and if
STRING is found the line is printed and the Editor returns to command
mode. If the string is not found the Editor prints "NOT MATCH" and
returns to command mode. When the string is found the current line
pointer "." is set to the liné where the string was found (ie. the line
that was printed).

1.4.15 WRITE

W writes the entire memory buffer into the
output device

#nW writes line n from the memory buffer to
the output device

#m, nW writes lines m to n from the memory buffer

to the output device

The WRITE command updates the current line pointer and the Editor
returns to the command mode.

An option "T" can be used with commands that write into the output
device: W, N, Q and E. It must be entered immediately after the first
character of the command.

Examples:

#WT #Qr #NT #ET

This option converts all the TAB“s into the necessary spaces during the
transfer of text from memory buffer to the output device.

1=13

1.5

Diagnostic Messages

SYNTAX or LINE ERROR - The user has entered an illegal command

- The argument(s) of a command is/are invalid(s)

- The user has requested non-existent information
(eg. a listing of a non-existent line)

- In either mode, the 1line has more than 80
characters or no characters.
The same applies during a READ command

KILL? -After a KILL command, if the user presses "Y"

(and return), the Editor deletes the buffer
and returns to command mode. Any other
character will cause the Editor to return to
command mode leaving the buffer intact.

NO MATCH - After a SEARCH or CHANGE command means that

the string was not found.

BUFFER FULL - The Editor can accept no more text. The

user must therefore write all or part of the
buffer into the output device and then free
space in the buffer by using KILL or DELETE.

BUFFER EMPTY ' - The buffer contains no text. This is given in

response to commands which refer to the buffer
(ie. L, I, C, O etc).

XXXX LINES READ IN - Occurs after a READ command XXXX is the

total number of 1lines transferred into the
buffer.

After writing any of these messages the Editor returns to command mode.

.
=)}

OoOZ0R"RHEHUOO WP oo
|

R -

Summary of the commands

adds symbolic text

searches for a string in the file

replaces one string with another one

deletes lines

exits from Editor

inserts before the current line

deletes the memory buffer

lists lines of the memory buffer

dumps the current buffer and reads new text
replaces lines with new text

dumps the current buffer and closes the file on the output
device

reads from the input device, filling the buffer

CTRL/C - aborts the Editor

S -
W -

searches for a string in the buffer
writes the current buffer into the output device

1-14

CHAPTER 2

THE ASSEMBLER

2.1 Assembly Language Instructions

The format of the assembly language instructions is the same as that
found in most assemblers. There are four fields: 1label, operator,
operand and comment. The 1label and comment fields are optional; the
operator field is obligatory; the operand depends on the operator. The
fields are separated by one or more spaces or tabs and the comment field
must begin with a semi-colon. Labels can be up to 6 characters in
length; the first must be alphabetic but the remainder may be alphabetic
or numeric. Label definitions starting in column 1 can optionally be
followed by a colon. Label definitions not starting in colomn 1 must be
followed by the colon character.

-

Example:

Label Op“tor Op“nd Comment

an instruction can be formed like
this using only the comment field.
In this case no object code is
geneated. In practice these pseudo
instructions are only used to make
the program better documented

LD A,10 label field not used

label used and operand field not
field not required

TEST D B,5 the label TEST is defined here

JP TEST reference is made to the label TEST

defined in another instruction

MO MO Me N WE WO NP WO N WE NI N NG N Ne W we

2=1

Label Op“tor

Op“nd

Comment

BETA: ID
ADC
ALFA LD
JR
JP
ALFA? JP
ABCDH: INC
LD
LABELLL: LD
LA-BEL: LD

B,A

A, (HL)

A, (IY+4)

ALFA

TEST

(IX) ,B

NO NE MO NG NG NS NE WO N0 WO WO WO WO NG WO NG WO Ne WO WO WE NE W NE WO NG W WE W W WS Ne WE N Ne We N N6 e Ne We "W W W N ™o

the label BETA is defined here;
As BETA begins not in colomn 1,
the colon is obligatory to define
correctly the label

the operand field is formed by A and-
(HL) separated by a comma; for the
format of the operand(s), see the
Z80 INSTRUCTION SET manual

the label ALFA is defined here;
this instruction needs 3 operands:
A, IY and +4

JR is the mnemonic for the relative
jump; ALFA is the address to which it
jumps

this address is calculted by the
Assembler by subtracting from the
address of this instruction the
address of the instruction where
AILFA is defined; the result will be
inserted into 1 byte. Its value must
be in the range: -128 +127

JP is the mnemonic for the jump
instruction;

the destination address is found
by searching for TEST in the
symbol table;

the address is 16 bits long

an error message will appear on
the screen, as the character “?”°
is not wvalid

valid label; the colon is optional

error: the operand is missing

error; LABELLIL has more than six
characters

error; the label LA-BEL contains the
non-alphanumeric character " - "

2-2

2.2 Writing the instructions

For

the first three fields upper—case ASCII characters are used but

lower case may be used in comments. For numbers the following should be
noted:

a)

b)

For

numbers expressed in decimal have no special character appended
ex. 35 6454
hexadecimal numbers must end in H and must begin with a character

from 0 to 9. When the number begins with A-F , it must be preceeded
by 0

ex. 2AH 0A57BH 27H
data to be stored in one byte must be less than or equal to 255
(decimal) or FFH (hexadecimal). Numbers to reside in two bvies
must be less than or equal to 695535 (dec) or FFFFH (hex). The

Assembler will signal an error if this rule is not respected.

to introduce ASCII characters they must be preceded and followed by
the character "“".

Example:

LD A, °C” : the ASCII code for “C” is loaded
; into the accumulator. This is
; equivalent to:

LD A,43H

LD HL,"GM~ : the codes for “GM” are loaded
; into the register pair HL.
; This is equivalent to:

LD HL,474DH

the mnemonics and other rules the Zilog standard 1is used. See

"SGS-ATES INSTRUCTION SET MANUAL".

2~3

2.3 Pseudo Instructions

The pseudo-instructions are directives wuseful to simplify the
programmer ‘s work. Seven pseudo-instructions are recognised by the
Assembler. These are:

DEFB define byte

DEFM define message

DEFS define storage

DEFW define word (2 bytes)
END end

EQU equal to

ORG origin

DEFB

DEFB is used to define the contents of the current address count.
Example:

ORG 100H
DEFB 3H
DEFB 20H
DEFB 7FH
DEFB 134
DEFB 2
DEFB “B”

This will result in:

Address Content
100H 03H starts at 100H, see ORG
101H 20H
102H 7FH
103H 0A2H A2H=134 decimal
104H 32H 32H is ASCII code for 2
105H 42H 42H is ASCII code for B

DEFM
DEFM defines an ASCII character string. It is used principally to define

messages to be printed and look-up tables. The ASCII character string
must be preceeded and followed by the character "“".

2-4

Example:
DEFM “ABCDEF”

This instruction will define six bytes containing the ASCII codes of the
characters ABCDEF, ie. 41H, 42H, 43H, 44H, 45H and 46H. The character
"“" is used simply as a string delimiter.

DEFS

DEFS reserves an area of memory leaving it unchanged when loading the
object file. Usually this pseudo intruction is used to reserve buffer
areas which will be filled during execution but obviously not at the
assembly stage.

Example:
ORG OFFH ; set the address counter to FFH
DEFB 0AAH ; AAH is placed at the address FFH
; and the address is incremented to 100H
DEFS 80H ; 80H (128 decimal) bytes of memory are
; reserved. An example of this would be
; a sector buffer for floppy disk read
; operations.
; At this point the address counter is
; incremented to 180H
DEFB 0BBH ; BB hex is stored at location 180H
DEFB OCCH ; CC hex is stored at location 181H
DEFW

DEFW defines a word, i.e. two bytes, at the current address counter and
the following location.

Example:

ORG 100H
DEFW 1234H ; 34H is stored at 100H and 12H at 101H.
; Note that the low-order byte always comes

first in Z80 programming.

END

END pseudo instruction is obligatory at the end of every symbolic file.
It is used by the Assembler to decide when the end has been reached and
to stop the scanning of source code. If an address is specified as an
argument it will generate an autostart record. The autostart record is
used to start execution of an object file automatically after loading.

2-5

11
B
e
5L

Example:

INIT: e

BQU

With this pseudo instruction it 1is possible to equate a label to a

INIT

Ne we Nwe we “o “e o

instructions

starting point of the program

program end and autostart address

numeric value and subsequently use it in the program.

Example:
GOON: EQU
BEGIN: EQU
BYT: EQU
WOR: EQU
ORG
LD
LD
JP

1000H
200H
7AH
8BATH

BEGIN
A,BYT
HL ,WOR
GOON

This is equivalent to:

ORG
LD
LD
JP

200H
A,7AH
HL,8BA7H
1000H

~e weo “wo “e

BYT is 1 byte
WOR is 1 word (2 bytes)
GOON address is 1 word

e we we wo wo

origin at 200H

load A with 7A hex
load HL with 8BA7 hex
jump to 1000 hex

The use of EQU brings two advantages:

1. Instructions can be documented better by using mnemonics instead of

numbers

Example:

MOTOR:
START:

EQU 5
EQU 5AH

LD A,START
OUT (MOTOR) ,A

~e weo wo

Ne wo wo

port 5 controls a motor

port configuration to start
the motor

prepare A
send the contents of A to the
port which controls the motor

2. The program can be parametrised, ie. the data bytes that determines a
certain configuration can be equated to a label. Each time the
configuration has to be modified all that need be done is to
change the EQU instructions.

Example:

MEMORY : EQU 850H defines the value of the

label MEMORY

H
ORG MEMORY ; sets the address counter to
; the value of memory
; that is 850H
VALUE: DEFB XX : inserts a number at the current
; addrress
COUNT: DEFB YY : inserts a number in the next

location

ID A, (VALUE) VALUE is found at the address
850H
INC (COUNT) COUNT is found at the address

851H

~e WO weo w8 “e we

If it is required to move the area of memory used, MEMORY can be
redefined by changing the instruction:

MEMORY : EQU XXX

On reassembly, all the instructions referring to this area will be
changed to suit the new addresses.

ORG

This pseudo instruction redefines the initial setting of the address
counter. If ORG is missing assembly will start from the address 0000H.

A

2.4 Printer Format

The Assembler generates a line of text for every instruction. This line

" is subdivided into five fields:

Error field

Source code line number field (in decimal)
Address field (in hexadecimal)

Object code field (in hexadecimal)

Source statement field.

The error field is occupied by a character identifying the error type
whenever an error is found in the assembly of the line in which it

appears.

The 1line number field maintains a progressive and continuous count of
the lines of source code which is useful when the Editor is used to
modify source statements.

The address field contains the address of the first byte of the object
code generated for each instruction. The possible 1, 2 or 3 remaining
bytes of the instruction follow in the object code field. The object
code field contains the assembled code in hexadecimal. The source
statement field contains, unchanged, the source instruction. Some pseudo
instructions do not generate any object code and consequently have
blanks in the related address and object code fields Instructions
consisting only of comments do not generate code either so the same
applies.

2-8

2.5 Available routines

In the present section the software routines available to the user are
described, with their entry point and main features.

2.5.1 WRITE
Entry point: E3B3 hex
Purpose: to serially transmit a byte
Description: The byte to be transmitted is contained in the A
register. A test is performed on the content of the memory
location pointed to by the location PRINT (0176 hex); the
transmission is performed only if its content is different

from zero.

Registers altered: none

2.5.2 READX
Entry point: E3B6 hex
Purpose: to serially receive one byte
Description: the byte is stored in the A register. A lower-case
character is converted into the corresponding upper-case

character.

Register altered: A

2.5.3 RILFX
.Entry point: E3B9 hex

Purpose: to serially transmit the sequence "Carriage Return, Line
Feed"

Register altered: A

2.5.4 WRITEY
Entry point: E3C8 hex
Purpose: to send a byte in output
Description: the content of the A register is sent to the serial
inter face, to the cassette or to the printer, according to the
content of the memory 1location pointed to by the FLAOUT
location (0169 hex).

Registers altered: none

2-9

2.5.5 TAPEX
Entry point: E3BC hex
Purpose: to read a byte from an input
Description: the A register is loaded with the content of the
serial interface or the cassette, according to the content of
the memory location pointed to by the FLAINP location (0168
hex)

Register altered: A

2.5.6 DELAY
Entry point: E3C5 hex
Purpose: to create a software-controlled delay

Description: a delay is created, whosw value is 400 msec times the
content of the A regikster

Register altered: A is cleared.

2.5.7 PRINTX
Entry point: E3DD hex
Purpose: to printout on the line printer
Description: sends the content of the A register on the line
printer according to the control keys used to enable disable
the printing

Register altered: none

2-10

2.6 Errors

The error listing onto the console or onto the printer has the format:

XX YYYY 22400

where

XX = error code

YYYY = line number where the error has been detected

2Z.s source statement

The error codes are as follows:

IC syntax error

ID field separator error

IN error in the END argument

IT label definition error

DT label duplicated

2 too many symbols: insufficient room in the symbol table.

In this case the number of labels must be reduced.

2-11

APPENDIX A

A.l1 EDITOR

The system is initialised as explained in the Section 2.2 of the 780
Nanocomputer NBZ80-HL and NBZ80-ASED Tecnical Manual. The messages in
bold are written by the system, the other by the operator.

PERIPHERAL ASSIGNEMENT

The Editor gains the control of the system and
types:

SGS/ATES EDI-Z/N REL.1.0
INPUT (L,H,C)=

the operator types L for input from keyboard

INPUT (L,H,
aorpur (L,H,

a8
TR

the operator types C for output on the cassette

oorPUT (L,H,C)= C
the Editor types the prompt character

CREATION OF A NEW TEXT

the operator types the command A to append a new
text to the buffer that in our case is empty

the Editor is in input mode and the operator
inserts the text. Each line is terminated by
the Carriage Return

LD SP,0C80H

LD HL,0A800H

LD A,20 ; comments

LD B,0FH ; etcetera

JR LAB1

END
the operator exits from input mode typing the
ESCAPE command key. The Editor answers with the
prompt character (#)

LISTING THE BUFFER
the operator types L to list the whole buffer
on the console
$ L

the Editor 1lists on the console the complete
text buffer

ID SP,0C80H

ID HL,0A800H

JR LABL

END
the Editor ends typing the prampt character (#).
The operator asks the list of the line number 12
of the text buffer by typing 12L

$# 12L

the Editor types the line #12

BIT 2'A

the operator asks the list of lines #8 and #9 by
typing 8,9L

$# 8,9L

POP DE
INC BC
the line number is positioned on line #9
:
MODIFYING A TEXT
the operator inserts new text before the line
#9 by typing I
$ I
the Editor is in input mode, new text can be
inserted
LD (HL) ,B
INC HL
1D () ,C
the operator ends the input mode by typing
ESCAPE
]
the operator queries the actual 1line number
typing .=
$.=
the Editor answers with
0011
starting from 1line #9, 3 new lines have been
joined
the operator asks the list of the lines inserted
$# 8,12L
POP DE
ID (HL) ,B
INC HL
LD (HL) ,C

¥ /=

0021

$ S

7'A

OV ~J um
D’J’O

BIT

BIT

6,A

the operator asks how many lines are in the
buffer by typing /=

the Editor answers with

21 lines are in the buffer position the lin
counter to the beginning

now the operator asks to the Editor to searc
the string 7,A in the text buffer by typing the
command S for search then Carriage Return and
the string requested

the Editor searches the string 7,A and prin
the line when it has been found

the operator wants to change the string 7,A wi
6,A by typing C , Carriage Return, the ol
string (7,A) and the new string (6,A)

the Editor answers with the modified string

the operator ends the Editor session by typing
the command E to exit

the Editor writes the text buffer on the output

cassette and returns control to the Monitor
NC-Z.

Now the operator can pass to the Assembly phase entering the Assembler
or go back to the Editor entering again the Editor as explained at the
beginning of the present Appendix. Remember that if he reenters the

Editor he probably will work with input from the cassette and output on
the cassette.

A.2 ASSEMBLER
The Assembler receives the control and types:

SGS/ATES ASS-Z/N REL.1.0

IN (L/H/C)=
the operator selects the sowos mput fram
cassette and types C
IN (L/B/C)= C
the Assembler asks for the ouoDuos Z=vice of the
object code
OUT (L/H/C) =
the operator selects the casseti= znd Tipes C
QuT(L/H/C)= C
the Assembler asks for the listimg devics
LIS (L/H/C)=
the operator selects the primz=r ==¢ Tymes L for
the high speed printer
LIS (L/H/C)= L
the Assembler asks the murmber of o= oass
PASS?
the operator types 1 for pass L
PASS? 1
the Assembler lists the srrors on e console
IC 0021 POP YY
the error occurred om The m=troacs on 2t line
21: POP YY has an i1llsgs” omerand; the
Assembler asks for the me=t zass
PASS?
the operator selects the zas==s L
PASS? 2
the Assembler f&types T mummer oI errors
detected: in this case I srrors eecs Jetect
ERR 0002
the Assembler asks-Ifor The mews fass
PASS?
the operator asks for the ooe=cs oode =g types
3 for this operatiom
PASS? 3
at the end the Assesp’=c w.__ ==¢ Ior =he next
operation
PASS?
the operator exit ow —wos DEE/C- the control

will return to the Mom =or WC-1.

Nl
¢

SGS-ATES GROUP OF COMPANIES

INTERNATIONAL HEADQUARTERS
SGS-ATES Componenti Elettronici SpA

Via C. Olivetti 2 - 20041 Agrate Brianza - ltaly
Tel.: 039 - 65551

Telex: 330131-330141

BENELUX

SGS-ATES Componenti Elettronici SpA
Benelux Sales Office

B- 1180 Bruxelles

Winston Churchill Avenue, 122

Tel.: 02 - 3432439

Telex: 24149 B

DENMARK

SGS-ATES Scandinavia AB
Sales Office

2730 Herlev

Herlex Torv, 4

Tel.: 02 - 948533

Telex: 35411

EASTERN EUROPE

SGS-ATES Componenti Elettronici SpA
Export Sales Office ’
20041 Ayrate Brianza - ltaly

Via C. Olivetti, 2

Tel.: 039 - 6555287/6555207

Telex: 330131-330141

FINLAND

SGS-ATES Scandinavia AB
Sales Office

02210 Esbo 21
Kaantopiiri, 2

Tel.: 90 - 881395/6

Telex: 123643

FRANCE

SGS-ATES France S.A.
75643 Paris Cedex 13
Résidence “’Le Palatino”’
17, Avenue de Choisy
Tel.: 01 - 5842730
Telex: 042 - 250938

WEST GERMANY
SGS-ATES Deutschland Halbleiter
Bauelemente GmbH
8018 Grafing bei Munchen
Haidling, 17

Tel.: 08092-691

Telex: 05 27378

Sales Offices:

3012 Langenhagen
Hubertusstrasse, 7

Tel.: 0511 - 772075/7
Telex: 09 23195

8000 Miinchen 90
Tegernseer Landstr., 146
Tel.: 089 - 6925100
Telex: 05 215784

8500 Niirnberg 15
Parsifalstrasse, 10

Tel.: 0911 - 49645/6
Telex: 0626243

7000 Stuttgart 80
Kalifenweg, 45

Tel.: 0711 - 713091/2
Telex: 07 255545

HONG KONG

SGS-ATES Singapore (Pte) Ltd.
9th Floor, Block N,

Kaiser Estate, Phase |11,

11 Hok Yuen St.,

Hung Hom, Kowloon

Tel.: 3-644251/5

Telex: 63906 ESGIE HX

ITALY ;
SGS-ATES Componenti Elettronici SpA ‘.
Direzione Commerciale ltalia |
20149 Milano
Via Correggio, 1/3
Tel.: 02 - 4695651 ;
Sales Office : \
00199 Roma

Piazza Gondar, 11

Tel.: 06 - 8392848/8312777

SINGAPORE

SGS-ATES Singapore (Pte) Ltd.
Singapore 1231

Lorong 4 & 6 - Toa Payoh

Tel.: 2631411

Telex: ESGIES RS 21412

SWEDEN

SGS-ATES Scandinavia AB

19501 Marsta

Box 144

Tel.: 0760 - 40120 :
Telex: 042 - 10932

SWITZERLAND

SGS-ATES Componenti Elettronici SpA
Swiss Sales Offices

6340 Baar

Oberneuhofstrasse, 2

Tel.: 042 - 315955

Telex: 864915

1218 Grand-Saconnex (Geneve)
Chemin Frangois-Lehmann 22
Tel.: 022 - 986462/3

Telex: 28895 ;

UNITED KINGDOM

SGS-ATES (United Kindgom) Ltd.
Aylesbury, Bucks

Planar House, Walton Street

Tel.: 0296 - 5977

Telex: 041 - 83245

US.A.

SGS-ATES Seminconductor Corporation
Scottsdale, AZ 85251

7070, East 3rd Avenue

Tel.: (602) 990-9553

Telex: SGS ATES SCOT 165808
Waltham, MA 02154

240, Bear Hill Road

Tel.: (617) 890-6688

Telex: 923495 WHA

Des Plaines, IL 60018

2340, Des Plaines Ave Suite 309
Tel.: (312) 296-4035

Telex: 282547

Santa Clara, CA 95051

2700, Augustine Drive

Tel.: (408) 727- 3404

Telex: 346402

Woodland Hills, CA 91367
6355, Topange Canyon Boulevard
Suite 220

Tel.: (213) 716-6600

Telex: 182863

Orlando, FL 32792

1309, South Semoran Blvd.
Lakeview, 436 Office Park

Tel.: (305) 671-8599

Information furnished is believed to be accurate and reliable. However no responsibility is assumed for the consequences of its use nor for
any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of SGS-ATES. Specifications mentioned in this publication are subject to change without notice. This

publication supersedes and substitutes all information previously supplied.

SGS-ATES GROUP OF COMPANIES
SYSTEMS DIVISION
Italy — France — Germany — Malta — Malaysia — Singapore — Sweden — United Kingdom — U.S.A.
© SGS-ATES Componenti Elettronici SpA, 1982 - Printed in italy
280 and Z8000 are trademarks of Zilog Inc.

